twinks albert and birdsim piss and fuck.desi porn
nxxx.desi
xxx sex

Investigating nutrient biomarkers of healthy brain aging: a multimodal brain imaging study


  • Zamroziewicz, M. & Barbey, A. Nutritional cognitive neuroscience: innovations for healthy brain aging. Front. Neurosci. 10, 240 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen, D., Leoni, V., Klein-Flügge, M., Ebmeier, K. & Suri, S. Associations of dietary markers with brain volume and connectivity: a systematic review of MRI studies. Ageing Res. Rev. 70, 101360 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tracey, T., Steyn, F., Wolvetang, E. & Ngo, S. Neuronal lipid metabolism: multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci. 11, 10 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Köbe, T., Witte, A., Schnelle, A., Lesemann, A. & Fabian, S. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. NeuroImage 131, 226–238 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Witte, A., Kerti, L., Hermannstädter, H., Fiebach, J. & Schreiber, S. Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb. Cortex 24, 3059–3068 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Jernerén, F., Elshorbagy, A., Oulhaj, A., Smith, S. & Refsum, H. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am. J. Clin. Nutr. 102, 215–221 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sueyasu, T., Yasumoto, K., Tokuda, H., Kaneda, Y. & Obata, H. Effects of long-chain polyunsaturated fatty acids in combination with lutein and zeaxanthin on episodic memory in healthy older adults. Nutrients 15, 2825 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zwilling, C., Strang, A., Anderson, E., Jurcsisn, J. & Johnson, E. Enhanced physical and cognitive performance in active duty Airmen: evidence from a randomized multimodal physical fitness and nutritional intervention. Nat. Sci. Rep. 10, 17826 (2020).

    CAS 

    Google Scholar
     

  • Mazereeuw, G., Lanctôt, K., Chau, S., Swardfager, W. & Herrmann, N. Effects of ω-3 fatty acids on cognitive performance: a meta-analysis. Neurobiol. Aging 33, e17–e29 (2012).

    Article 

    Google Scholar
     

  • Franzoni, F. et al. Oxidative stress and cognitive decline: the neuroprotective role of natural antioxidants. Front. Neurosci. 15, 729–757 (2021).

    Article 

    Google Scholar
     

  • Terracina, S., Petrella, C., Francati, S., Lucarelli, M. & Barbato, C. Antioxidant intervention to improve cognition in the aging brain: the example of hydroxytyrosol and resveratrol. Int. J. Mol. Sci. 23, 156–174 (2022).

    Article 

    Google Scholar
     

  • Lindbergh, C., Lv, J., Zhao, Y., Mewborn, C. & Puente, A. The effects of lutein and zeaxanthin on resting state functional connectivity in older Caucasian adults: a randomized controlled trial. Brain Imaging Behav. 14, 668–681 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sloan, R., Wall, M. & Yeung, L. Insights into the role of diet and dietary flavanols in cognitive aging: results of a randomized controlled trial. Sci. Rep. 11, 3837 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh, T., Yuan, C., Ascherio, A., Rosner, B. & Willett, W. Long-term dietary flavonoid intake and subjective cognitive decline in US men and women. Neurology 97, e1041–e1056 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakazaki, E., Mah, E., Sanoshy, K., Citrolo, D. & Watanabe, F. Citicoline and memory function in healthy older adults: a randomized, double-blind, placebo-controlled clinical trial. J. Nutr. 151, 2153–2160 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • López-Otín, C., Blasco, M., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirkwood, T. Understanding the odd science of aging. Cell 120, 437–447 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirkwood, T. B. A systematic look at an old problem. Nature 451, 644–647 (2008).

  • Wrigglesworth, J., Ward, P., Harding, I., Nilaweera, D. & Wu, Z. Factors associated with brain ageing—a systematic review. BMC Neurolol. 21, 312 (2021).

    Article 

    Google Scholar
     

  • Bethlehem, R., Seidlitz, J., White, S. & Vogel, J. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harada, C., Natelson Love, M. & Triebel, K. Normal cognitive aging. Clin. Geriatr. Med. 29, 737–752 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raz, N. & Rodrigue, K. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 30, 730–748 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sexton, C., Walhovd, K., Storsve, A., Tamnes, C. & Westlye, L. Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J. Neurosci. 34, 15425–15436 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lockhart, S. & DeCarli, C. Structural imaging measures of brain aging. Neuropsychol. Rev. 24, 271–289 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fjell, A., McEvoy, L., Holland, D., Dale, A. & Walhovd, K. Alzheimer’s Disease Neuroimaging Initiative Brain changes in older adults at very low risk for Alzheimer’s disease. J. Neurosci. 33, 8237–8242 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, D. & Reuter-Lorenz, P. The adaptive brain: aging and neurocognitive scaffolding. Annu. Rev. Psychol. 60, 173–196 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salthouse, T. What and when of cognitive aging. Curr. Direc. Psychol. Sci. 13, 140–144 (2004).

    Article 

    Google Scholar
     

  • IJ, D., Corley, J., Gow, A., Harris, S. & Houlihan, L. Age-associated cognitive decline. Br. Med. Bull. 92, 135–152 (2009).

    Article 

    Google Scholar
     

  • Craik, F. I., Salthouse, T. A. The Handbook of Aging and Cogntion, 1st edn (Psychology Press, New York City, 2008).

  • Mattay, V., Goldberg, T., Sambataro, F. & Weinberger, D. Neurobiology of cognitive aging: insights from imaging genetics. Biol. Psychol. 79, 9–22 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyberg, L. & Pudas, S. Successful memory aging. Annu. Rev. Psychol. 70, 219–243 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Franke, K., Ziegler, G., Klöppel, S. & Gaser, C. Alzheimer’s Disease Neuroimaging Initiative Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50, 883–892 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Liem, F. Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage 148, 179–188 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Franke, K. & Gaser, C. Ten years of brainAGE as a neuroimaging biomarker of brain aging: what insights have we gained? Front. Neurol 10, 789 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talukdar, T., Zwilling, C. & Barbey, A. Integrating nutrient biomarkers, cognitive function, and structural MRI data to build multivariate phenotypes of healthy aging. J. Nutr. 153, 1338–1346 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zamroziewicz, M., Paul, E. J., Zwilling, C. E. & Barbey, A. K. Determinants of fluid intelligence in healthy aging: omega-3 polyunsaturated fatty acid status and frontoparietal cortex structure. Nutr. Neurosci. 21, 570–579 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zamroziewicz, M., Paul, E., Zwilling, C. & Barbey, A. Predictors of memory in healthy aging: polyunsaturated fatty acid balance and fornix white matter integrity. Aging Dis. 8, 372–383 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galea, I. The blood-brain barrier in systemic infection and inflammation. Cell Mol. Immunol. 18, 2489–2501 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sankowski, R., Mader, S. & Valdés-Ferrer, S. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front. Cell Neurosci. 9, 29 (2015).

    Article 

    Google Scholar
     

  • Sun, Y., Koyama, Y. & Shimada, S. Inflammation from peripheral organs to the brain: how does systemic inflammation cause neuroinflammation? Front. Aging Neurosci. 14, 903455 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sartori, A., Vance, D., Slater, L. & Crowe, M. The impact of inflammation on cognitive function in older adults: implications for healthcare practice and research. J. Neurosci. Nurs. 44, 206–217 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sæther, L., Ueland, T., Haatveit, B., Maglanoc, L. & Szabo, A. Inflammation and cognition in severe mental illness: patterns of covariation and subgroups. Mol. Psychiatry 28, 1284–1292 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kipinoinen, T., Toppala, S., Rinne, J., Viitanen, M. & Jula, A. Association of midlife inflammatory markers with cognitive performance at 10-year follow-up. Neurology 99, e2294–e2302 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soberman, R. & Christmas, P. The organization and consequences of eicosanoid signaling. J. Clin. Investig. 111, 1107–1113 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goyens, P., Spilker, M., Zock, P., Katan, M. & Mensink, R. Conversion of α-linolenic acid in humans is influenced by the absolute amounts of α-linolenic acid and linoleic acid in the diet and not by their ratio. Am. J. Clin. Nutr. 84, 44–53 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y., Qiu, X. & Yang, J. Comparing the in vitro antitumor, antioxidant and anti-inflammatory activities between two new very long-chain polyunsaturated fatty acids, docosadienoic acid (DDA) and docosatrienoic acid (DTA), and docosahexaenoic acid (DHA). Nutr. Cancer 73, 1697–1707 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henry, G., Momin, R., Nair, M. & Dewitt, D. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agric. Food Chem. 50, 2231–2234 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caballero, B. Ed., Encyclopedia of Human Nutrition in Health Effects of Saturated Fatty Acids, 215–219 (Academic Press, 2013).

  • Lemaitre, R. & King, I. Very long-chain saturated fatty acids and diabetes and cardiovascular disease. Curr. Opin. Lipidol. 33, 76–82 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, D., Misialek, J., Jing, M., Tsai, M. & Eckfeldt, J. Plasma phospholipid very-long-chain SFAs in midlife and 20-year cognitive change in the Atherosclerosis Risk in Communities (ARIC): a cohort study. Am. J. Clin. Nutr. 111, 1252–1258 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zamroziewicz, M., Talukdar, M., Zwilling, C. & Barbey, A. Nutritional status, brain network organization, and general intelligence. NeuroImage 161, 241–250 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Burdge, G., Tricon, S., Morgan, R., Kliem, K. & Childs, C. Incorporation of cis-9, trans-11 conjugated linoleic acid and vaccenic acid (trans-11 18:1) into plasma and leucocyte lipids in healthy men consuming dairy products naturally enriched in these fatty acids. Br. J. Nutr. 94, 237–243 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Field, C., Blewett, H., Proctor, S. & Vine, D. Human health benefits of vaccenic acid. Appl. Physiol. Nutr. Metab. 34, 979–991 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murru, E., Carta, G., Manca, C., Sogos, V. & Pistis, M. Conjugated linoleic acid and brain metabolism: a possible anti-neuroinflammatory role mediated by PPARα activation. Front. Pharmacol. 11, 587140 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, Y., Meng, H., Hu, G. & Li, F. Iosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms. Appl. Microbiol. Biotechnol. 102, 3027–3035 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwilling, C., Talukdar, T., Zamroziewicz, M. & Barbey, A. Nutrient biomarker patterns, cognitive function, and fMRI measures of network efficiency in the aging brain. NeuroImage 188, 239–251 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Power, R., Nolan, J., Prado-Cabrero, A., Roche, W. & Coen, R. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial. Clin Nutr 41, 405–414 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ceravolo, S., Hammond, B., Oliver, W., Clementz, B. & Miller, L. Dietary carotenoids lutein and zeaxanthin change brain activation in older adult participants: a randomized, double-masked, placebo-controlled trial. Mol. Nutr. Food Res. 63, 15 (2019).

    Article 

    Google Scholar
     

  • Tanprasertsuk, J., Scott, T., Barbey, A., Barger, K. & Wang, X. Carotenoid-rich brain nutrient pattern is positively correlated with higher cognition and lower depression in the oldest old with no dementia. Front. Nutr. 8, 704691 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, K., Cha, M. & Lee, B. Neuroprotective effect of antioxidants in the brain. Int. J. Mol. Sci. 21, 7152 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • La Fata, G., Weber, P. & Mohajeri, M. Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients 6, 5453–5472 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, P. & Ulatowski, L. Vitamin E: mechanism of transport and regulation in the CNS. IUBMB Life 71, 424–429 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colom, R., Karama, S., Jung, R. & Haier, R. Human intelligence and brain networks. Front. Psychol. 12, 489–501 (2010).


    Google Scholar
     

  • Zamroziewicz, M., Zwilling, C. & Barbey, A. Inferior prefrontal cortex mediates the relationship between phosphatidylcholine and executive functions in healthy, older adults. Front. Aging Neurosci. 8, 226 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gómez-Pinilla, F. Brain foods: the effects of nutrients on brain function. Nat. Rev. Neurosci. 9, 568–578 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowman, G., Shannon, J., Ho, E., Traber, M. & Frei, B. Reliability and validity of food frequency questionnaire and nutrient biomarkers in elders with and without mild cognitive impairment. Alzheimer Dis. Assoc. Disord. 25, 49–57 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fraser, G., Jaceldo-Siegl, K., Henning, S., Fan, J. & Knutsen, S. Biomarkers of dietary intake are correlated with corresponding measures from repeated dietary recalls and food-frequency questionnaires in the adventist health study-2. J. Nutr. 146, 586–594 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Folstein, M., Folstein, S. & McHugh, P. Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhimin, X. & Howard, L. R. Analysis of Antioxidant‐Rich Phytochemicals (John Wiley & Sons Ltd, 2012).

  • Folch, J., Lees, M. & Stanley, G. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Babson, A. The Cirrus Immulite automated immunoassay system. J. Clin. Immunoassay 14, 83–88 (1991).


    Google Scholar
     

  • Hart, G., Furniss, J., Laurie, D. & Durham, S. Measurement of vitamin D status: Background, clinical use, and methodologies. Clin Lab 52, 335–343 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Van Dijk, K., Hedden, T., Venkataraman, A., Evans, K. & Lazar, S. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 103, 297–321 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, S. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkinson, M., Beckmann, C., Behrens, T., Woolrich, M. & Smith, S. Fsl. Neuroimage 62, 782–790 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Satterthwaite, T., Wolf, D. & Loughead, J. Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60, 623–632 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate inverse consistent registration: a robust approach. Neuroimage 53, 1181–1196 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C. & Behrens, T. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Behrens, T. E. et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Behrens, T., Berg, H., Jbabdi, S., Rushworth, M. & Woolrich, M. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, S., Jenkinson, M., Johansen-Berg, H., Rueckert, D. & Nichols, T. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Oishi, K., Zilles, K., Amunts, K., Faria, A. & Jiang, H. Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43, 447–457 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Muldoon, S., Bridgeford, E. & Bassett, D. Small-world propensity and weighted brain networks. Sci. Rep. 6, 22057 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeo, B., Krienen, F. & Sepulcre, J. The organization of the human cerebral cortex is estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Craddock, R., James, G., Holtzheimer, P., Hu, X. & Mayberg, H. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ree, M. Correlation and regression: applications for industrial organizational psychology and management. Organ. Res. Methods 5, 200–201 (2002).

    Article 

    Google Scholar
     

  • Fox, M., Zhang, D., Snyder, A. & Raichle, M. The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 101, 3270–3283 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, K., Birn, R., Handwerker, D., Jones, T. & Bandettini, P. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?. Neuroimage 44, 893–905 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Paul, E., Larsen, R. & Barbey, A. Dissociable brain biomarkers of fluid intelligence. NeuroImage 137, 201–211 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wechsler, D. Wechsler Abbreviated Scale of Intelligence (Psychological Corporation, 1999).

  • Delis, D. C., Kaplan, E. & Kramer, J. H. Delis-Kaplan Executive Function System (D–KEFS) (The Psychological Corporation, San Antonio, 2001).

  • Wechsler, D. WMS-IV: Wechsler Memory Scale-fourth Edition (Pearson, San Antonio, 2009).

  • Siedlecki, K., Honig, L. & Stern, Y. Exploring the structure of a neuropsychological battery across healthy elders and those with questionable dementia and Alzheimer’s disease. Neuropsychology 22, 400–411 (2009).

    Article 

    Google Scholar
     

  • Jurca, R., Jackson, A., LaMonte, M., Morrow, J. J. & Blair, S. Assessing cardiorespiratory fitness without performing exercise testing. Am. J. Prev. Med. 29, 185–193 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • CoreTeam, R Studio: Integrated Development Environment for R (RStudio, PBC, Boston, 2022).

  • Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020).

  • Salvatore, M. rcompanion: Functions to Support Extension Education Program Evaluation, R package version 2.3.25, (2020).



  • Source link

    girlfriends having fun with their favorite toy.amateur girls double dong full insertion.
    pornsnake.net
    sex tube my golden pussy is not beautiful and.